Biofilms and Water Quality – are they getting importance in modern pig production system?

Biofilms and Water Quality – are they getting importance in modern pig production system?

What is Biofilm?
Biofilm is a gelatinous tough layer consisting of cells immobilized in an organic polymer matrix of microbial origin. Biofilms are collections of micro-organisms (i.e. bacteria, yeasts and protozoa) that form on a hard surface with the presence of water. Some examples of biofilms are the plaque that forms on teeth and the slime that forms on surfaces in watery areas surrounded by slimy secretions. Over 90% of all bacteria live in biofilms.

Formation of Biofilm
Biofilm development is a result of successful attachment and subsequent growth of micro-organisms on a surface. Biofilm harbours colonies of pathogenic bacteria. Biofilm formation is a multi step process whereby bacteria adhere to equipment surfaces, surround themselves with a protective layer of polysaccharides and grow into a network of micro-colonies and water channels (Geldreich & Rice, 19 87).

It has three development phases:
1) The surface is modified by attachment of organic molecules (eg. Glucose, milk, vitamins etc.).
2) Reversible attachment of microbes to the organic layer and colonisation.
3) Irreversible attachment and biofilm formation. In a mature biofilm, the cells are organised into columns surrounded by large void spaces that form channels to carry nutrients (O2) deep into the biofilm
Thus enclosed watering systems designed to keep birds and animals healthier turn into the sources of delivering pathogen rich water to the system.

Detrimental effects of Biofilms
Several investigators have shown that the multiplication of micro-organisms in biofilms along the distribution systems results in the deterioration of the bacteriological quality of drinking water, the development of odour or colour as well as the acceleration of the phenomenon of corrosion within the pipe network (Nagy & Olson, 1985). The most alarming results of biofilm formation are the presence and multiplication of pathogenic and opportunistic pathogens such as Escherichia coli, Salmonella typhimurium Pseudomonas, Mycobacteria, Campylobacter, Klebesiella, Aeromonas, Legionella spp., Helicobacter pylori and occurring within the biofilms (Engle et al., 1980; Wadowsky et al., 1982; Burke et al., 1984; Mackey et al., 1998)

Problems Caused by Biofilms

  • Tend to clog pipes and water filters and nipple drinkers.
  • This can cause the drinkers to leak.
  • Can cause numerous diseases mainly due to the source o f E. coli and Salmonella.
  • Can form almost anywhere that water is present, including water and liquid feed channels.
  • Micro-organisms in biofilms express extra resistance to antibiotics (1000 times the dose of antimicrobials required).
  • Extra cost for maintenance and cleaning.

Control and prevention of Biofilms

  • By preventing the initial adhesion of bacteria but practically very difficult.
  • By decreasing humidity, reducing leaks from pipes and improving poor drainage would be of significant controls.
  • By allowing the surface to dry on which the biofilm is formed. This is effective but difficult to perform.
  • By sensitising biofilm bound bacteria to existing antibiotics but in most cases it is hard to perform and costly process, as well. There is no antibiotic that can penetrate the layer.
  • By removing biofilms once they have formed. This is difficult to achieve but is the only current practical approach in pig housing.
  • By proper cleaning and disinfection by Chlorine, Hydrogen Peroxide etc. But Chlorine has limited use due to inherent odour and negative effects on live vaccine and medications. Hydrogen peroxide (H2O2) will effectively remove the biofilm, but is very unstable.
  • Control and prevention can be achieved successfully once the system is cleared of biofilms by frequent and routine sanitation of the system with organic acids.

Sources
Published in Poultry Digest, February/March 2012
http://www.biofilmsonline.com
AHMAD et al. / J. Agri. Soc. Sci., Vol. 4, No. 2, 2008 . Biofilm Formation and Drinking Water Quality in Relation to Escherichia coli at Commercial Poultry Farms
Lehtola, M.J., T. Juhna and I.T. Miettinen, 2004. Formation of biofilms in drinking water distribution networks, a case study in two cities in Finland and Latvia. J. Ind. Microbiol. Biotechnol., 31: 489 – 94
Mackay, W.G., L.T. Gribbon, M.R. Barer and D.C. Reid, 1998. Biofilms in drinking water systems – A possible reservoir for Helicobacter pylory. Water Sci. Technol., 38: 181 – 5

Recent Articles

Biostrong® Protect - full phytogenic protection under challenge conditions

22nd July 2020

• Maintains feed intake particularly under conditions of enhanced challenge. • Supports poultry gut health and resilience to stress over... Read More

Trace minerals: Even distribution is the key

20th July 2020

Formulating diets to meet the mineral requirements of production animals is critical to maximise health and production efficiency. The... Read More

Hydroxy trace minerals reduce effects necrotic enteritis

17th July 2020

Research finds that adding hydroxy trace minerals to feed can reduce mortality and improve performance comparable to an ionophore... Read More

Debunking trace mineral myths in animal nutrition

16th July 2020

Innovations in trace mineral nutrition, including organic and hydroxy trace minerals, help maximise animal health and productivity. Mineral premixes can... Read More

Four reasons producers are rethinking copper sulphate in poultry feed

19th May 2020

The supplementation of copper has become commonplace among poultry producers thanks to its well- known beneficial effects on bird... Read More

Bedgen 40® in Free Range Layers

14th February 2019

The plant extract product- Bedgen 40® is a natural additive based on artichoke extract.  It contains caffeoylquinic acids, flavonoids, polyphenols... Read More

Reducing antibiotics without harming profitability is an actual possibility

08th December 2017

Ten million people will die due to antibiotic resistance, ensures the "Antimicrobial Resistance Review" published by the United Kingdom... Read More

Organic acids can support antibiotic reduction strategies with a consistent anti-bacterial effect

23rd November 2017

The animal production industry keeps searching for strategies to reduce antibiotics while maintaining profitability. Even though the experts already... Read More

Managing the risk makes the difference in mycotoxin control

19th November 2017

Last week, Trouw Nutrition held a webinar on the results of the 2017 harvest analyses in terms of mycotoxin... Read More

Beating Salmonella with AVIATOR™

20th October 2017

AVIATOR™ is a multi-component, all-natural feed supplement containing Refined Functional Carbohydrates™ (RFC™) that has Generally Recognised as Safe (GRAS)... Read More